Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla
page 117 of 127 (92%)
page 117 of 127 (92%)
![]() | ![]() |
|
in the coil C. When Leyden jar discharges were used to induce currents
in the coil C, it was found necessary to pack the tube T tightly with insulating powder, as a discharge would occur frequently between the turns of the coil, especially when the primary was thick and the air gap, through which the jars discharged, large, and no little trouble was experienced in this way. [Illustration: FIG. 32.--ELECTRO-DYNAMIC INDUCTION TUBE.] [Illustration: FIG. 33--ELECTRO-DYNAMIC INDUCTION LAMP.] In Fig. 33 is illustrated another form of the bulb constructed. In this case a tube T is sealed to a globe L. The tube contains a coil C, the ends of which pass through two small glass tubes t and t_1, which are sealed to the tube T. Two refractory buttons m and m_1 are mounted on lamp filaments which are fastened to the ends of the wires passing through the glass tubes t and t_1. Generally in bulbs made on this plan the globe L communicated with the tube T. For this purpose the ends of the small tubes t and t_1 were just a trifle heated in the burner, merely to hold the wires, but not to interfere with the communication. The tube T, with the small tubes, wires through the same, and the refractory buttons m and m_1, was first prepared, and then sealed to globe L, whereupon the coil C was slipped in and the connections made to its ends. The tube was then packed with insulating powder, jamming the latter as tight as possible up to very nearly the end, then it was closed and only a small hole left through which the remainder of the powder was introduced, and finally the end of the tube was closed. Usually in bulbs constructed as shown in Fig. 33 an aluminium tube a was fastened to the upper end s of each of the tubes t and t_1, in order to protect that end against the heat. The buttons |
|