Scientific American Supplement, No. 794, March 21, 1891 by Various
page 6 of 146 (04%)
page 6 of 146 (04%)
|
adapted to the efficient, safe and prompt movement of trains, to the
necessary limitations improved by details of construction, and also the one most economical in maintenance and manufacture. It is our aim this afternoon to look into this question in so far as the diameter of the wheel affects it, and in doing it we must consider what liability there is to breakage or derangement of the parts of the wheel, hot journals, bent axles, the effect of the weight of the wheel itself, and the effect upon the track and riding of the car, handling at wrecks and in the shop, the first cost of repairs, the mileage, methods of manufacture, the service for which the wheel is intended and the material of which it is made. Confining ourselves to freight and passenger service, and to cast iron and steel wheels in the general acceptation of the term as being the most interesting, we know that cast iron is not as strong as wrought iron or steel, that the tendency of a rotating wheel to burst is directly proportional to its diameter, and that the difficulty of making a suitable and perfect casting increases with the diameter. Cast iron, therefore, would receive no attention if it were not for its far greater cheapness as compared to wrought iron or steel. This fact makes its use either wholly or in part very desirable for freight service, and even causes some roads in this country, notably the one with which I am connected, to find it profitable to develop and perfect the cast iron wheel for use in all but special cases. Steel, on the other hand, notwithstanding its great cost, is coming more and more into favor, and has the great recommendations of strength and safety. It is also of such a nature that wheels tired with it run much further before being unfit for further service than |
|