Scientific American Supplement, No. 794, March 21, 1891 by Various
page 7 of 146 (04%)
page 7 of 146 (04%)
|
those made of cast iron, and consequently renewals are less frequent.
The inference would seem to be that a combination of steel and cast iron would effect the desirable safeness with the greatest cheapness; but up to the present this state of affairs has not yet been realized to the proper extent, because of the labor and cost necessary to accomplish this combination and the weakness involved in the manner of joining the two kinds of material together. Taking up the consideration of the diameter of the wheel now, and allowing that on the score of economy cast iron must be used for wheels in freight service, we are led to reflect that here heavy loads are carried, and there is a growing tendency to increase them by letting the floor of the car down to a level with the draft timbers. All this makes it desirable to have the wheels strong and small to avoid bent axles and broken flanges, to enable us to build a strong truck, to reduce the dead weight of cars to a minimum, and have wrecks quickly cleared away. The time has not yet come when we have to consider seriously hot journals arising from high speed on freight trains, and a reasonable degree only of easy riding is required. The effect on the track is, however, a matter of moment. Judging from the above, I should say that no wheel larger than one 33 in. in diameter should be used under freight cars. Since experience in passenger service shows that larger cast iron wheels do not make greater mileage and cost more per 1,000 miles run, and that cast iron wheels smaller than 33 in., while sometimes costing less per 1,000 miles run, are more troublesome in the end, it is apparent that 33 in. is the best diameter for the wheels we have to use in freight service. When we take up passenger service we come to a much more difficult and interesting part of the subject, for here we must consider it in all |
|