Scientific American Supplement, No. 794, March 21, 1891 by Various
page 92 of 146 (63%)
page 92 of 146 (63%)
![]() | ![]() |
|
superheating space enables a lower temperature to be used for the
"fixing." This does away, to a certain extent, with the too great breaking down of the hydrocarbons, and consequent deposition of carbon. This form of apparatus has just found its way to this country, and I describe it as being the one most used in the States, and the type upon which, practically, all water gas plant with superheaters has been founded. The Springer apparatus, which is under trial by one of the large gas companies, differs from the Lowe merely in construction. In this apparatus the superheater is directly above the generator; and there is only one superheating chamber instead of two. The air blast is admitted at the bottom, and the producer gases heat the superheater in the usual way, and when the required temperature is reached, the steam is blown in at the top of the generator, and is made to pass through the incandescent fuel, the water gas being led from the bottom of the apparatus to the top, where it enters at the summit of the superheater, meets the oil, and passes down with it through the chamber, the finished gas escaping at the middle of the apparatus. This same idea of making the air blast pass up through the fuel, while in the subsequent operation the steam passes down, is also to be found in the Loomis plant, and is a distinct advantage, as the fuel is at its hottest where the blast has entered, and, in order to keep down the percentage of carbon dioxide, it is important that the fuel through which the water gas last passes should be as hot as possible, to insure its reduction to carbon monoxide. The Flannery apparatus is again but a slight modification of the Lowe plant, the chief difference being that, as the gas leaves the |
|