Scientific American Supplement, No. 794, March 21, 1891 by Various
page 93 of 146 (63%)
page 93 of 146 (63%)
![]() | ![]() |
|
generator, the oil is fed into it, and, with the gas, passes through a
D-shaped retort tube, which is arranged round three sides of the top of the generator; and in this the oil is volatilized, and passes, with the gas, to the bottom of the superheater, in which the vapors are converted into permanent gases. The Van Steenbergh plant, with which I have been experimenting for some time, stands apart from all other forms of carbureted water gas plant, in that the upper layer of the fuel itself forms the superheater, and that no second part of any kind is needed for the fixation of the hydrocarbons, an arrangement which reduces the apparatus to the simplest form, and leaves no part which can choke or get out of order, an advantage which will not be underrated by any one who has had experience of these plants. While, however, this enormous advantage is gained, there is also the drawback that the apparatus is not fitted for use with crude oils of heavy specific gravity, such as can be dealt with in the big external superheaters of the Lowe class of water gas plant, but the lighter grades of oil must be used in it for carbureting purposes. I am not sure in my own mind that this, which appears at first a disadvantage, is altogether one, as, in the first place, the lighter grades of oil, if judged by the amount of carbureting power which they have, are cheaper per candle power, added to the gas, than the crude oils, while their use entirely does away with the formation of pitch and carbon in the pipes and purifying apparatus--a factor of the greatest importance to the gas manufacturer. The fact that light oils give a higher carburation per gallon than heavy crude oil is due to the fact that the latter have to be heated |
|