Half-hours with the Telescope - Being a Popular Guide to the Use of the Telescope as a - Means of Amusement and Instruction. by Richard Anthony Proctor
page 20 of 115 (17%)
page 20 of 115 (17%)
|
This is effected by combining, as shown in fig. 4, a convex lens of _crown_ glass with a concave lens of _flint_ glass, the convex lens being placed nearest to the object. A little colour still remains, but not enough to interfere seriously with the distinctness of the image. But even if the image formed by the object-glass were perfect, yet this image, viewed through a single convex lens of short focus placed as in fig. 1, would appear curved, indistinct, coloured, and also _distorted_, because viewed by pencils of light which do not pass through the centre of the eye-glass. These effects can be diminished (but not entirely removed _together_) by using an _eye-piece_ consisting of two lenses instead of a single eye-glass. The two forms of eye-piece most commonly employed are exhibited in figs. 5 and 6. Fig. 5 is Huyghens' eye-piece, called also the _negative_ eye-piece, because a real image is formed _behind_ the _field-glass_ (the lens which lies nearest to the object-glass). Fig. 6 represents Ramsden's eye-piece, called also the _positive_ eye-piece, because the real image formed by the object-glass lies _in front of_ the field-glass. [Illustration: _Fig. 5._] [Illustration: _Fig. 6._] The course of a slightly oblique pencil through either eye-piece is exhibited in the figures. The lenses are usually plano-convex, the convexities being turned towards the object-glass in the negative eye-piece, and towards each other in the positive eye-piece. Coddington has shown, however, that the best forms for the lenses of the negative eye-piece are those shown in fig. 5. |
|