Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 27 of 243 (11%)
page 27 of 243 (11%)
![]() | ![]() |
|
There are no set rules for drawing the general form of the pallet arms, only to be governed by and conforming to about what we would deem appropriate, and to accord with a sense of proportion and mechanical elegance. Ratchet-tooth pallets are usually made in what is termed "close pallets"; that is, the pallet jewel is set in a slot sawed in the steel pallet arm, which is undoubtedly the strongest and most serviceable form of pallet made. We shall next consider the ratchet-tooth lever escapement with circular pallets and ten degrees of pallet action. DELINEATING CIRCULAR PALLETS. To delineate "circular pallets" for a ratchet-tooth lever escapement, we proceed very much as in the former drawing, by locating the point _A_, which represents the center of the escape wheel, at some convenient point, and with the dividers set at five inches, sweep the arc _m_, to represent the periphery of the escape wheel, and then draw the vertical line _A B'_, Fig. 19. We (as before) lay off thirty degrees on the arc _m_ each side of the intersection of said arc with the line _A B'_, and thus establish on the arc _m_ the points _a b_, and from _A_ as a center draw through the points so established the radial lines _A a'_ and _A b'_. We erect from the point _a_ a perpendicular to the line _A a_, and, as previously explained, establish the pallet center at _B_. Inasmuch as we are to employ circular pallets, we lay off to the left on the arc _m_, from the point _a_, five degrees, said five degrees being half of the angular motion of the escape wheel utilized in the present drawing, and thus establish the point _c_, and from _A_ as a center draw through this |
|