Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 40 of 243 (16%)
page 40 of 243 (16%)
![]() | ![]() |
|
its intersection with the addendum circle _w_ we must define the
position of the inner angle of the entrance pallet. We name the point so established the point _r_. The outer angle of this pallet is located at the intersection of the radial line _A b_ with the line _B i_; said intersection we name the point _v_. Draw a line from the point _v_ to the point _r_, and we define the impulse face of the entrance pallet; and the angular motion obtained from it as relates to the pallet staff embraces six degrees. Measured on the arc _l_, the entire ten degrees of angular motion is as follows: Two and a half degrees from the impulse face of the tooth, and indicated between the lines _B h_ and _B f_; one and a half degrees lock between the lines _B f'_ and _B i_; six degrees impulse from pallet face, entrance between the lines _B i_ and _B j_. A DEPARTURE FROM FORMER PRACTICES. Grossmann and Britten, in all their delineations of the club-tooth escapement, show the exit pallet as disengaged. To vary from this beaten track we will draw our exit pallet as locked. There are other reasons which prompt us to do this, one of which is, pupils are apt to fall into a rut and only learn to do things a certain way, and that way just as they are instructed. To illustrate, the writer has met several students of the lever escapement who could make drawings of either club or ratchet-tooth escapement with the lock on the entrance pallet; but when required to draw a pallet as illustrated at Fig. 23, could not do it correctly. Occasionally one could do it, but the instances were rare. A still |
|