Creative Chemistry - Descriptive of Recent Achievements in the Chemical Industries by Edwin E. Slosson
page 35 of 299 (11%)
page 35 of 299 (11%)
![]() | ![]() |
|
are two cast iron tubes curving upward and outward like the horns of a
Texas steer and cooled by a stream of water passing through them. These electric furnaces produce two or three ounces of nitric acid for each kilowatt-hour of current consumed. Whether they can compete with the natural nitrates and the products of other processes depends upon how cheaply they can get their electricity. Before the war there were several large installations in Norway and elsewhere where abundant water power was available and now the Norwegians are using half a million horse power continuously in the fixation of nitrogen and the rest of the world as much again. The Germans had invested largely in these foreign oxidation plants, but shortly before the war they had sold out and turned their attention to other processes not requiring so much electrical energy, for their country is poorly provided with water power. The Haber process, that they made most of, is based upon as simple a reaction as that we have been considering, for it consists in uniting two elemental gases to make a compound, but the elements in this case are not nitrogen and oxygen, but nitrogen and hydrogen. This gives ammonia instead of nitric acid, but ammonia is useful for its own purposes and it can be converted into nitric acid if this is desired. The reaction is: NN + HH + HH + HH --> NHHH + NHHH Nitrogen hydrogen ammonia The animals go in two by two, but they come out four by four. Four molecules of the mixed elements are turned into two molecules and so the gas shrinks to half its volume. At the same time it acquires an odor--familiar to us when we are curing a cold--that neither of the original gases had. The agent that effects the transformation in this case is not the electric spark--for this would tend to work the reaction |
|