Book-bot.com - read famous books online for free

Scientific American Supplement, No. 717, September 28, 1889 by Various
page 37 of 153 (24%)
of the shoe inverted, showing the grooves in its face. Fig. 3 shows
the hollow shoe, into which water at a pressure of ten atmospheres is
forced by a pipe from a tank on the tender. The water enters by the
pipe, C, and fills the whole of the chamber, D. The water attempts to
escape, and in doing so lifts the shoe slightly, thus filling the
first groove of the chamber. The pressure again lifts the shoe, and
the second chamber is filled; and so on, until ultimately the water
escapes at the ends, E, and sides, F. Thus a film of water is kept
between the shoe and the rail, and on this film the carriage is said
to float. The water runs away into the channels, H H (Fig. 6), and is
collected to be used over again. Fig. 3 also shows the means of
supporting the carriage on the shoe by means of K, the point of
support being very low. The system of grooves on the lower face of the
shoe is shown in Fig. 5. So much for the means by which wheels are
dispensed with, and the carriage enabled to slide along the line.

[Illustration: FIG. 3.]

[Illustration: FIG. 4.]

[Illustration: FIG. 5.]

[Illustration: FIG. 6.]

The next point is the method of propulsion. Figs. 7 and 8 give an
elevation and plan of one of the experimental carriages. Along the
under side of each of the carriages a straight turbine, L L, extends
the whole length, and water at high pressure impinges on the blades of
this turbine from a jet, M, and by this means the carriage is moved
along. A parabolic guide, which can be moved in and out of gear by a
DigitalOcean Referral Badge