Book-bot.com - read famous books online for free

Scientific American Supplement, No. 717, September 28, 1889 by Various
page 38 of 153 (24%)
lever, is placed under the tender, and this on passing strikes the
tappet, S, and opens the valve which discharges the water from the
jet, M, and this process is repeated every few yards along the whole
line. The jets, M, must be placed at such a distance apart that at
least one will be able to operate on the shortest train that can be
used. In this turbine there are two sets of blades, one above the
other, placed with their concave sides in opposite directions, so that
one set is used for propelling in one direction and the other in the
opposite direction. In Fig. 6 it is seen that the jet, M, for one
direction is just high enough to act against the blades, Q, while the
other jet is higher, and acts on the blades, P, for propulsion in the
opposite direction. The valves, R, which are opened by the tappet, S,
are of peculiar construction, and we hope soon to be able to give
details of them. Reservoirs (Fig. 6) holding water at high pressure
must be placed at intervals, and the pipe, T, carrying high pressure
water must run the whole length of the line. Fig. 6 shows a cross
section of the rail and carriage, and gives a good idea of the general
arrangements. The absence of wheels and of greasing and lubricating
arrangements will alone effect a very great saving, as we are informed
that on the Lyons Railway, which is 800 kilometers long, the cost of
oil and grease exceeds £400,000 per annum. As Sir Edward Watkin
recently explained, all the great railway companies have long tried to
find a substitute for wheels, and this railway appears to offer a
solution of that problem. Mons. Barre thinks that a speed of 200
kilometers (or 120 miles) per hour may be easily and safely attained.

[Illustration: FIG. 7.]

[Illustration: FIG. 8.]

DigitalOcean Referral Badge