Logic - Deductive and Inductive by Carveth Read
page 70 of 478 (14%)
page 70 of 478 (14%)
![]() | ![]() |
|
denotes the sum of its co-ordinates (§ 6); and to obtain a
contradictory, the surest way is to coin one by prefixing to the given term the particle 'not' or (sometimes) 'non': as 'wise, not-wise,' 'human, non-human,' 'greater, not-greater.' The separate word 'not' is surer to constitute a contradictory than the usual prefixes of negation, 'un-' or 'in-,' or even 'non'; since compounds of these are generally warped by common use from a purely negative meaning. Thus, 'Nonconformist' does not denote everybody who fails to conform. 'Unwise' is not equivalent to 'not-wise,' but means 'rather foolish'; a very foolish action is not-wise, but can only be called unwise by meiosis or irony. Still, negatives formed by 'in' or 'un' or 'non' are sometimes really contradictory of their positives; as 'visible, invisible,' 'equal, unequal.' § 8. The distinction between Positive and Negative terms is not of much value in Logic, what importance would else attach to it being absorbed by the more definite distinction of contradictories. For contradictories are positive and negative in essence and, when least ambiguously stated, also in form. And, on the other hand, as we have seen, when positive and negative terms are not contradictory, they are misleading. As with 'wise-unwise,' so with many others, such as 'happy-unhappy'; which are not contradictories; since a man may be neither happy nor unhappy, but indifferent, or (again) so miserable that he can only be called unhappy by a figure of speech. In fact, in the common vocabulary a formal negative often has a limited positive sense; and this is the case with unhappy, signifying the state of feeling in the milder shades of Purgatory. When a Negative term is fully contradictory of its Positive it is said |
|