Logic - Deductive and Inductive by Carveth Read
page 71 of 478 (14%)
page 71 of 478 (14%)
![]() | ![]() |
|
to be Infinite; because it denotes an unascertained multitude of things,
a multitude only limited by the positive term and the _suppositio_; thus 'not-wise' denotes all except the wise, within the _suppositio_ of 'intelligent beings.' Formally (disregarding any _suppositio_), such a negative term stands for all possible terms except its positive: x denotes everything but X; and 'not-wise' may be taken to include stones, triangles and hippogriffs. And even in this sense, a negative term has some positive meaning, though a very indefinite one, not a specific positive force like 'unwise' or 'unhappy': it denotes any and everything that has not the attributes connoted by the corresponding positive term. Privative Terms connote the absence of a quality that normally belongs to the kind of thing denoted, as 'blind' or 'deaf.' We may predicate 'blind' or 'deaf' of a man, dog or cow that happens not to be able to see or hear, because the powers of seeing and hearing generally belong to those species; but of a stone or idol these terms can only be used figuratively. Indeed, since the contradictory of a privative carries with it the privative limitation, a stone is strictly 'not-blind': that is, it is 'not-something-that-normally-having-sight-wants-it.' Contrary Terms are those that (within a certain genus or _suppositio_) severally connote differential qualities that are, in fact, mutually incompatible in the same relation to the same thing, and therefore cannot be predicated of the same subject in the same relation; and, so far, they resemble Contradictory Terms: but they differ from contradictory terms in this, that the differential quality connoted by each of them is definitely positive; no Contrary Term is infinite, but is limited to part of the _suppositio_ excluded by the others; so that, possibly, neither of two Contraries is truly predicable of a given subject. Thus 'blue' and 'red' are Contraries, for they cannot both be |
|