$a Äther und Relativitäts-Theorie + Geometrie und Erfahrung $l Englisch;Sidelights on Relativity by Albert Einstein
page 20 of 31 (64%)
page 20 of 31 (64%)
![]() | ![]() |
|
no means so radical as might appear from a hasty examination. For
it is not a difficult task to determine the physical state of a measuring-rod so accurately that its behaviour relatively to other measuring-bodies shall be sufficiently free from ambiguity to allow it to be substituted for the "rigid" body. It is to measuring-bodies of this kind that statements as to rigid bodies must be referred. All practical geometry is based upon a principle which is accessible to experience, and which we will now try to realise. We will call that which is enclosed between two boundaries, marked upon a practically-rigid body, a tract. We imagine two practically-rigid bodies, each with a tract marked out on it. These two tracts are said to be "equal to one another" if the boundaries of the one tract can be brought to coincide permanently with the boundaries of the other. We now assume that: If two tracts are found to be equal once and anywhere, they are equal always and everywhere. Not only the practical geometry of Euclid, but also its nearest generalisation, the practical geometry of Riemann, and therewith the general theory of relativity, rest upon this assumption. Of the experimental reasons which warrant this assumption I will mention only one. The phenomenon of the propagation of light in empty space assigns a tract, namely, the appropriate path of light, to each interval of local time, and conversely. Thence it follows that the above assumption for tracts must also hold good for intervals of clock-time in the theory of relativity. Consequently it may be formulated as follows:--If two ideal clocks are going at the same rate at any time and at any place (being then in immediate proximity |
|