$a Äther und Relativitäts-Theorie + Geometrie und Erfahrung $l Englisch;Sidelights on Relativity by Albert Einstein
page 21 of 31 (67%)
page 21 of 31 (67%)
![]() | ![]() |
|
to each other), they will always go at the same rate, no matter where
and when they are again compared with each other at one place.--If this law were not valid for real clocks, the proper frequencies for the separate atoms of the same chemical element would not be in such exact agreement as experience demonstrates. The existence of sharp spectral lines is a convincing experimental proof of the above-mentioned principle of practical geometry. This is the ultimate foundation in fact which enables us to speak with meaning of the mensuration, in Riemann's sense of the word, of the four-dimensional continuum of space-time. The question whether the structure of this continuum is Euclidean, or in accordance with Riemann's general scheme, or otherwise, is, according to the view which is here being advocated, properly speaking a physical question which must be answered by experience, and not a question of a mere convention to be selected on practical grounds. Riemann's geometry will be the right thing if the laws of disposition of practically-rigid bodies are transformable into those of the bodies of Euclid's geometry with an exactitude which increases in proportion as the dimensions of the part of space-time under consideration are diminished. It is true that this proposed physical interpretation of geometry breaks down when applied immediately to spaces of sub-molecular order of magnitude. But nevertheless, even in questions as to the constitution of elementary particles, it retains part of its importance. For even when it is a question of describing the electrical elementary particles constituting matter, the attempt may still be made to ascribe physical importance to those ideas of fields which have been physically defined for the purpose |
|