$a Äther und Relativitäts-Theorie + Geometrie und Erfahrung $l Englisch;Sidelights on Relativity by Albert Einstein
page 29 of 31 (93%)
page 29 of 31 (93%)
![]() | ![]() |
|
same as the laws of disposition of the discs _L_ on the spherical
surface. For to each original figure on _K_ there is a corresponding shadow figure on _E_. If two discs on _K_ are touching, their shadows on _E_ also touch. The shadow-geometry on the plane agrees with the the disc-geometry on the sphere. If we call the disc-shadows rigid figures, then spherical geometry holds good on the plane _E_ with respect to these rigid figures. Moreover, the plane is finite with respect to the disc-shadows, since only a finite number of the shadows can find room on the plane. At this point somebody will say, "That is nonsense. The disc-shadows are _not_ rigid figures. We have only to move a two-foot rule about on the plane _E_ to convince ourselves that the shadows constantly increase in size as they move away from _S_ on the plane towards infinity." But what if the two-foot rule were to behave on the plane _E_ in the same way as the disc-shadows _L'_? It would then be impossible to show that the shadows increase in size as they move away from _S_; such an assertion would then no longer have any meaning whatever. In fact the only objective assertion that can be made about the disc-shadows is just this, that they are related in exactly the same way as are the rigid discs on the spherical surface in the sense of Euclidean geometry. We must carefully bear in mind that our statement as to the growth of the disc-shadows, as they move away from _S_ towards infinity, has in itself no objective meaning, as long as we are unable to employ Euclidean rigid bodies which can be moved about on the plane _E_ for the purpose of comparing the size of the disc-shadows. In respect of the laws of disposition of the shadows _L'_, the point _S_ has no special privileges on the plane any more than on the |
|