$a Äther und Relativitäts-Theorie + Geometrie und Erfahrung $l Englisch;Sidelights on Relativity by Albert Einstein
page 30 of 31 (96%)
page 30 of 31 (96%)
![]() | ![]() |
|
spherical surface.
The representation given above of spherical geometry on the plane is important for us, because it readily allows itself to be transferred to the three-dimensional case. Let us imagine a point _S_ of our space, and a great number of small spheres, _L'_, which can all be brought to coincide with one another. But these spheres are not to be rigid in the sense of Euclidean geometry; their radius is to increase (in the sense of Euclidean geometry) when they are moved away from _S_ towards infinity, and this increase is to take place in exact accordance with the same law as applies to the increase of the radii of the disc-shadows _L'_ on the plane. After having gained a vivid mental image of the geometrical behaviour of our _L'_ spheres, let us assume that in our space there are no rigid bodies at all in the sense of Euclidean geometry, but only bodies having the behaviour of our _L'_ spheres. Then we shall have a vivid representation of three-dimensional spherical space, or, rather of three-dimensional spherical geometry. Here our spheres must be called "rigid" spheres. Their increase in size as they depart from _S_ is not to be detected by measuring with measuring-rods, any more than in the case of the disc-shadows on _E_, because the standards of measurement behave in the same way as the spheres. Space is homogeneous, that is to say, the same spherical configurations are possible in the environment of all points.* Our space is finite, because, in consequence of the "growth" of the spheres, only a finite number of them can find room in space. |
|