Scientific American Supplement, No. 288, July 9, 1881 by Various
page 6 of 160 (03%)
page 6 of 160 (03%)
|
[Footnote 1: The accompanying engravings have been made from drawings of the apparatus in the laboratory of which Mr. Muentz is director, at the Agronomic Institute.] [Illustration: FIG. 1.--FIRST DISTILLATORY APPARATUS.] [Illustration: FIG. 2.--SECOND DISTILLATORY APPARATUS.] Mr. Muentz's method of procedure is as follows: He submits to distillation three or four gallons of snow, rain, or sea water in an apparatus such as shown in Fig. 1. The part which serves as a boiler, and which holds the liquid to be distilled, is a milk-can, B. The vapors given off through the action of the heat circulate through a leaden tube some thirty-three feet in length, and then traverse a tube inclosed within a refrigerating cylinder, T, which is kept constantly cold by a current of water. They are finally condensed in a glass flask, R, which forms the receiver. When 100 or 150 cubic centimeters of condensed liquid (which contains all the alcohol) are collected in the receiver, the operations are suspended. The liquid thus obtained is distilled anew in a second apparatus, which is analogous to the preceding but much smaller (Fig. 2). The liquid is heated in the flask, B, and its vapor, after traversing a glass worm, is condensed in the tube, T. The operation is suspended as soon as five or six cubic centimeters of the condensed liquid have been collected in the test-tube, R. The latter is now removed, and to its liquid contents, there is added a small quantity of iodine and carbonate of soda. The mixture is slightly heated, and soon there are seen forming, through precipitation, small crystals of iodoform. Under such circumstances, iodoform could only have been formed through the presence of an alcohol in the liquid. These analytical |
|