Scientific American Supplement, No. 324, March 18, 1882 by Various
page 60 of 143 (41%)
page 60 of 143 (41%)
![]() | ![]() |
|
London, February 2, 1882.
The lecturer said that it had been found useful to occasionally bring forward various points of chemical doctrine, on which there were differences of opinion, to be discussed by the society. On this occasion he wished not so much to demonstrate certain conclusions, or to make a declaration of his opinions, as to invite discussion and a thoughtful consideration of questions of importance to chemists. Originally three questions were proposed: First, Is there any satisfactory evidence deducible of the existence of two distinct forms of chemical combination (atomic and molecular)? Second, Is the determination of the vapor density of a body alone sufficient to determine the weight of the chemical molecule? Third, In the case of an element forming two or more distinct series of compounds, e.g., ferrous and ferric salts, is the transition from one series to another necessarily connected with the addition or subtraction of an even number of hydrogenoid atoms? He would, however, limit himself to the first of these questions; at the same time the three questions were so closely associated with one another that in discussing the first it was difficult to know where to begin. The answer to this question (Is there any satisfactory evidence deducible of the existence of two distinct forms of chemical combination?) depends materially on the view we take of the property called in text-books valency or atomicity; and before discussing the question it is important to have a clear idea of what these words valency and atomicity really mean. It is necessary, too, to start with some propositions which must be taken for granted. These propositions are: First, that in all chemical changes, those kinds of matter which we commonly call elementary, do not suffer decomposition. Second, That the atomic weights of the elements as received are correct, i.e., that they do really express with great exactitude the relative weights of the |
|